[FAQ] Is The Shipping Industry In The Right Direction About Fuels?

1059

Climate change is high on the agenda for most countries as they look to reduce greenhouse gas emissions significantly over the coming years. The shipping industry is currently one of the biggest polluters but it is responding to the need for lower carbon emissions and, ultimately, green fleets.

Facing challenge

The shipping industry is facing growing pressure to curb its CO2 emissions. The industry produces approximately 2.6% of all carbon emissions and carries more than 80% of goods traded globally. 

If the shipping industry were a country, it would be the world’s sixth-highest emitter, ahead of Germany.

“The real challenge with those fuels is that it’s very difficult for a whole industry to decide on one flavour and it’s not happening fast enough. It can’t happen fast enough, because of the vast infrastructure,” says Diane Gilpin, CEO of Smart Green Shipping (SGS). “It’s going to take a long time. And I think that that’s a real worry in terms of emissions, because they’re still rising from shipping.”

Is hydrogen the answer?

Hydrogen doesn’t emit any CO2 nor produce sulphur oxides or particulate matter. It can be produced using water and electricity and its green credentials are further enhanced if this power comes from renewable sources. The fuel has a high ratio of weight transported to distance travelled.

Nevertheless, increasing numbers of shipping organisations are viewing hydrogen as their preferred option. The China Maritime Safety Administration has authorised CCS to compile the first national set of technical rules for hydrogen fuel in shipping while Germany-based energy provider Uniper recently scrapped plans for an LNG import terminal in Wilhelmshaven in favour of hydrogen.

And the technology is already in use. CMB.TECH’s Hydroville is a dual-fuel passenger shuttle that uses hydrogen to power a retrofitted diesel engine to carry people between Antwerp and Kruibeke in Belgium. Injection of hydrogen displaces diesel use. Diesel fuel provides an important backup should there be any issues with hydrogen.

CMB.TECH has also developed a tugboat called the HydroTug, which it says is the first 4,000kW class dual-fuel vessel powered by hydrogen and diesel. The company is looking to develop a series of vessels, rather than just one-offs. 

CMB.TECH is now applying lessons learned on smaller ships to larger vessels, building bigger engines up to 2.5MW and is also researching into mono fuel engines. The focus is on achieving commercial viability without depending on subsidies, but to do so will take investment.

Windpower

Wind is abundant at sea and has been used to propel ships for centuries. Yet this power source has mostly been absent from larger vessels since engines became widespread.

SGS’s FastRig involves retractable steel and aluminium sails that provide propulsion for tankers and dry bulk vessels. The company has run detailed simulations through computational modelling involving the Ultrabulk Tiger carrying biomass from Baton Rouge in Louisiana, US, to Liverpool in the UK. Studies found FastRig technology could make noticeable savings in energy consumption.

Yet despite the potential, SGS has had difficulties securing funding for real-world tests.    

“It’s a real-world vessel. We’ve modelled it at real-world speeds and delivery schedules and we were able to demonstrate we could save at least 20% fuel. That was verified for us by the Wolfson Unit at Southampton University,” adds Gilpin.

Buying time

Ships running on new fuels will likely require retrofitting, and extra room for fuel storage would take up valuable cargo space. However, there may be a solution for both issues, as well as plastic pollution. Clean Planet Energy is turning plastic waste into diesel that meets EN 15940 specifications used by ships, as well as fuel oil. 

CPE claims its fuel products reduce CO2e emissions by 75% compared with fossil fuels, with minimal SOx and NOx emitted. According to CPE figures, 416kg of CO2e is prevented for every barrel of fuel it produces. In contrast, traditional fossil fuel extraction alone results in an estimated 52kg of CO2 for every barrel.

CPE has two plants currently under construction in the UK. A further four are in development and hoped to begin construction this year. Plants will be capable of processing 20,000 tonnes of plastic per annum, with an eventual combined target of one million tonnes. 

And CPE’s technology could result in even greater environmental savings, as Stephens explains the company is currently talking to 26 countries around the world.

Did you subscribe to our daily newsletter?

It’s Free! Click here to Subscribe!

Source: ship technology