Scientists Create First Amphibious Artificial Vision System

69

  • A new kind of artificial vision has been created that works well underwater and on land
  • It is based on how the fiddler crab’s eyes work
  • The fiddler crab was considered a good proxy as it is a semi-aquatic creature

Inspired by the way a Fiddler crab’s eye works, scientists have managed to develop a form of a novel artificial vision that works equally well on land and in water, reports MIT News.

Artificial vision

Researchers from the Gwangju Institute of Science and Technology (GIST), and Seoul National University in Korea managed to develop the artificial vision, according to a research published in the journal Nature Electronics.

This is a spectacular piece of optical engineering and non-planar imaging, combining aspects of bio-inspired design and advanced flexible electronics to achieve unique capabilities unavailable in conventional cameras,” said Professors at Northwestern University.

Potential uses span from population surveillance to environmental monitoring.”

Our hardware sight has enabled a wide range of applications, including object identification, crop monitoring, and self-driving cars.

But unlike living creatures, artificial vision systems can’t just naturally grow in their natural environments. For this reason, the new technology is capable of working in both aquatic and terrestrial environments.

Amphibious and panoramic imaging

The fiddler crab, a semi-terrestrial species known affectionately as the “calling crab” (as it appears to be beckoning with its huge claws), has amphibious imaging ability and an extremely wide field of view.

The new artificial eye, which resembles a round, generally unremarkable, little black ball, is able to discern light through a combination of components.

The researchers used a flexible photodiode array with comb-shaped patterns, an array of flat microlenses with a graded refractive index profile, and a 3D spherical structure.

Because of this setup, no matter what the refractive index of the area around the image sensor was, light beams from various sources would always converge there.

The system is able to provide constant image quality and an almost 360-degree field of view in both terrestrial and aquatic situations.

The amphibious and panoramic imaging capabilities were evaluated in in-air and in-water studies by imaging five objects at various distances and directions.

Meaning: Unlike earlier systems, it could see in two different domains—underwater and on land.

Inspiring fiddler crabs eye

Regarding fiddler crabs, there is more to the story than first appears. Their powerful, distinctive visual system, which has evolved from living both underwater and on land, is hidden under their enormous claws.

The species’ graded refractive indices and flat corneas work together to counteract the defocusing effects brought on by changes in the environment, which would be an overwhelming limit for other compound eyes.

The ellipsoidal and stalk-eye structures of the crabs enable them to see in three dimensions and in all directions. To protect themselves from attacks on wide-open tidal flats and to interact and communicate with their mates, they have evolved to gaze at practically everything at once.

Did you subscribe to our daily Newsletter?

It’s Free! Click here to Subscribe

Source: MIT News

LEAVE A REPLY

This site uses Akismet to reduce spam. Learn how your comment data is processed.